Reg. No.:

Code No.: 20862 E Sub. Code: FSCS 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Second Semester

Computer Science

$\begin{array}{c} \textbf{Skill Enhancement Course} - \textbf{COMPUTER} \\ \textbf{ARCHITECTURE} \end{array}$

(For those who joined in July 2024 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- 1. What are the main components of basic computer system?
 - (a) CPU, RAM, Hard Disk
 - (b) Control Unit, ALU, Memory, Input/Output
 - (c) Register, ALU, Mouse, Keyboard
 - (d) Cache, ROM, Control Unit

2.	The	steps involved i	n in	struction	cycle	are
	(a) * F	etch, Decode, Exec	ute,	Store		
	(b) E	execute, Decode, Fe	etch,	Store		
	(c) I	ecode, Store, Fetch	ı, Ex	ecute		
	(d) F	etch, Store, Decode	e, Ex	ecute		
0		peed of a CPU is m				
3.	The s	peed of a Cr C is it	leasu	red by		
	(a) N	<i>l</i> egabytes	(b)	Terabytes		
	(c) (Gigahertz (GHz)	(d)	Bits per s	econd	
4.		many types of nonly used?	inst	ruction fo	rmats	are
	(a) 1		(b)	2		
	(c) 3		(d)	4		
5.	5. Which hardware component is used for multiplication?		for bir	ary		
	(a) I	Half Adder	(b)	ALU		
	(c) S	Shift Register	(d)	Multiplex	ter	
•}_	The 1	result of adding 110	01 an	d 1011 in	binary i	s
	(a) 1	1000	(b)	10101		
	(()	1000	(0)	TOTOT		

(c) 10010

(d) 11111

Page 2 Code No.: 20862 E

- 7. Booth's algorithm is used for
 - (a) Binary addition
 - (b) Floating-point division
 - (c) Multiplication of signed numbers
 - (d) Parallel processing
- 8. The DMA controller communicates with
 - (a) CPU and memory
 - (b) Cache memory
 - (c) Hard disk only
 - (d) Monitor
- 9. Which memory is at the top of memory hierarchy?
 - (a) Hard disk
 - (b) RAM
 - (c) Cache memory
 - (d) Register
- 10. The two main types of RAM are
 - (a) SRAM and DRAM
 - (b) ROM and PROM
 - (c) Static RAM and Flash memory
 - (d) Cache and Virtual memory

Page 3 Code No.: 20862 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Define computer architecture and explain its basic components.

Or

- (b) Discuss the different types of computer instructions with examples.
- 12. (a) Explain the role of Central Processing Unit (CPU) in computers.

Or

- (b) Differentiate data manipulation and data transfer instructions.
- 13. (a) Explain the hardware implementation of binary addition.

Or

- (b) Examine the concept of signed and unsigned number representation in computer arithmetic.
- 14. (a) Describe the steps involved in Booth's multiplication algorithm with example.

Or

(b) Discuss about floating-point arithmetic.

Page 4 Code No.: 20862 E

15. (a) Elucidate the concept of memory hierarchy with a neat diagram.

Or

(b) Write a note on associative memory.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Explain the common bus organization with neat diagram.

Or

- (b) Discuss about instruction cycle with flow. chart.
- 17. (a) Discuss the different instruction formats and their significance in CPU operations.

Or

- (b) Summarize the general register organization and its importance in instruction execution.
- 18. (a) Explain the division algorithm in detail.

Or

(b) Explain the multiplication algorithm in detail.

Page 5 Code No.: 20862 E

19. (a) Classify the different types of I/O interfaces and their working principles.

Or

- (b) Elaborate on working of Direct Memory Access with neat diagram.
- 20. (a) Describe the structure and working of main memory in computer system.

Or

(b) What is auxiliary memory? Explain the different types of auxiliary storage devices.

(8 p	ages)		. N	O.:
Co	de l	No. : 20861	E Su	b. Code : FECS 21
B.S	c. (CI	BSC) DEGRE	E EXAMIN	ATION, APRIL 2025.
		Sec	ond Semes	ter
		Con	nputer Scie	nce
	E	Clective – DIS	CRETE MA	THEMATICS
	(Fo	r those who jo	ined in Jul	y 2024 onwards)
Tim	e : Th	ree hours		Maximum: 75 marks
		PART A —	$-(10\times1=1$	10 marks)
		Answe	r ALL ques	tions.
	Cho	oose the correc	ct answer:	
1.	A -	is	an ordered	collection of objects
	(a)	Relation	(b)	Function
	(c)	Set	(d)	Proposition
2.	Wha	at is the card gers less than	linality of t n 10?	he set of odd positive
	(a)	10	(b)	5
	(c)	3	(d)	20

3.	A function $f: R \to R$ defined as $f(x) = x2$ is				
	(a)	One-One	(b)	Many-One	
	(c)	Onto	(d)	None of these	

- Let $A = \{1, 2, 3, 4, 5\}$ and R be a relation from A to $A, R = \{(x, y): y = x + 1\}$. Find the domain
 - (a) $\{1, 2, 3, 4, 5\}$ (b) $\{2, 3, 4, 5\}$

- (c) $\{1, 2, 3, 4\}$ (d) $\{1, 2, 3, 4, 5, 6\}$
- The proposition $\sim (\sim P \rightarrow \sim Q)$ is equivalent to
 - (a) $\sim P \vee Q$ (b) $P \vee \sim Q$

- (c) $P \wedge Q$ (d) $\sim P \wedge Q$
- The compound propositions p and q are called 6. logically equivalent if ———— is a tautology
 - (a) $p \leftrightarrow q$
- (b) $p \rightarrow q$
- (c) $\neg (p \lor q)$ (d) $\neg p \lor \neg q$
- The determinant of identity matrix is? 7.
 - (a) 1
 - (b) 0
 - (c) Depends on the matrix
 - (d) Unknown

Code No.: 20861 E Page 2

- 8. A symmetric matrix is a one in which?
 - (a) All diagonal elements are zero
 - (b) All diagonal elements are 1
 - (c) A = AT
 - (d) A = -AT
- 9. If A is an invertible square matrix then ——
 - (a) (AT)-1=(A-1)T
 - (b) (AT)T = (A-1)T
 - (c) (AT)-1=(A-1)-1
 - (d) unpredictable
- 10. Which of the following is not the property of transpose of a matrix?
 - (a) (A')' = A
 - (b) (A+B)' = A'+B'
 - (c) (AB)' = (BA)'
 - (d) (KA)' = KA'

Page 3 Code No.: 20861 E

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) If $A = \{1, 4\}, B = \{2, 3, 6\}, C = \{2, 3, 7\}$ then verify that $A \times (B - C) = (A \times B) - (A \times C)$.

Or

- (b) Using Venn diagrams, verify the following identities $A = (A \cap B) \cup (A B)$. If A and B are finite sets, we have $|A \cup B| = |A| + |B| |A \cap B|$.
- 12. (a) What do you mean by composition of functions? Let $f: R \to R$ defined as f(x) = 4x + 3 and $g: R \to R$ defined as g(x) = x/3. Find $f \circ g(x)$.

Or

- (b) Describe the relations on sets.
- 13. (a) Define disjunctive and conjunctive normal forms.

Or

(b) Show that $S \vee R$ is a tautologically implied by $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$.

Page 4 Code No.: 20861 E

[P.T.O.]

14. (a) If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 1 \\ 0 & 3 \end{bmatrix}$, find AB and BA . Is $AB = BA$?

Or

(b) If
$$B = \begin{bmatrix} 1 & 0 \\ 4 & 7 \end{bmatrix}$$
, find $2B$ and $-3B$.

15. (a) Calculate the adjoint of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 3 \end{bmatrix}.$

Or

(b) Explain the properties of Adjoin matrix.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

- 16. (a) Prove the following set identities
 - (i) $A-(B\cup C)=(A-B)\cap (A-C)$
 - (ii) $(A \cup B) = A \cap B$.

Or

Page 5 Code No.: 20861 E

- (b) Let A,B,C be three sets as shown in the following Venn diagram. For each of the following sets, draw a Venn diagram and shade the area representing the given set.
 - (i) $A \cup (B \cup C)$
 - (ii) $A \cap B \cap C$
 - (iii) $A \cup (B \cap C)$
 - (iv) $A (B \cap C)$
 - (v) $A \cup (B \cap C)^c$
- 17. (a) Define equivalence relation with the help of suitable example.

Or

- (b) Let A be a given finite sets and P(A) its power set. Let \subseteq be the inclusion relation on the elements of P(A). Draw the Hass diagram of $(P(A), \subseteq)$ for
 - (i) $A = \{a\}$
 - (ii) $A = \{a, b\}$
 - (iii) $A = \{a, b, c\}$
 - (iv) $A = \{a, b, c, d\}.$

18. (a) Construct the truth table $(P \lor Q) \to (P \land Q)$.

Or

- (b) (i) Obtain the disjunctive normal form $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$.
 - (ii) Obtain the principle conjunctive normal form $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$.
- 19. (a) Find the transpose of $\begin{bmatrix} 5 & 6 & -7 & 5 & 0 \\ 4 & 3 & 0 & 1 & 2 \\ -6 & 2 & 1 & -3 & -4 \end{bmatrix}$.

Or

(b) Find the inverse of the following matrices and verify that $AA^{-1} = 1$.

(i)
$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$
.

(ii) $\begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix}$.

20. (a) If $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$, find

the products AB and BA and hence solve the system of equations x+y+2z=1, 3x+2y+z=7, 2x+y+3z=2.

Or

(b) Discuss about singular and non-singular matrices.

Page 7 Code No.: 20861 E

has three fields namely Data, Next, Prev.	
List (b) Array	
Singly Linked List (d) Double Linked List	
is a Linear Data Structure that ws Last In First Out (LIFO) principle.	
Stack (b) Queue	
Linked Queue (d) Array	
Expression is the arithmetic	
operator appears between the two operands to which it is being applied.	
Infix (b) Interfix	
Postfix (d) Prefix	
is the topmost node in the tree archy which doesn't have any parent.	
Leaf Node (b) External Node	
Link (d) Degree	
number of nodes connected to a particular is called	
Depth (b) Height	
Degree (d) Domain	
Page 2 Code No.: 20859 E	
I S L L L L L L L L L L L L L L L L L L	

7.	A grapl	n is a graph in which there			
	is an edge between eve	ery pair of vertices.			
	(a) Undirected	(b) Directed			
	(c) Weighted	(d) Complete			
8.	A in a	graph is a path in which			
	first and last vertex a				
	(a) Loop	(b) Cycle			
	(c) Degree	(d) length			
9.	If the number of records to be sorted is small,				
	thensort	ing can be efficient.			
	(a) Merge	(b) Heap			
	(c) Selection	(d) Bubble			
10.	Which of the following algorithm?	ing is not a stable sorting			
	(a) Insertion sort	(b) Selection sort			
	(c) Bubble sort	(d) Merge sort			
	Pa	ge 3 Code No.: 20859 E			

PART B - (5 × 5 = 25 marks)

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

 (a) List the Characteristics and Applications of Data Structure.

Or

- (b) State the basic Operation on Doubly Linked List.
- 12. (a) Write notes on Infix Expression.

Or

- (b) Mention the Application of Queue.
- 13. (a) List the Types of Binary Tree.

Or

- (b) Write notes on Heap.
- 14. (a) Explain the Basic Terminology of Graph.

Or

(b) What is Euler Circuits?- Explain.

Page 4 Code No.: 20859 E

[P.T.O.]

15. (a) Mention the Difference between Sorting and Searching and its uses.

Or

(b) State steps for Insertion Sort.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Describe the Classification of Data Structures.

Or

- (b) Discuss about Polynomial Manipulations.
- 17. (a) Demonstrate the Implementation of Stack.

Or

- (b) Write notes on Priority Queue.
- 18. (a) Explain Depth First Traversal in Binary Trees.

Or

(b) Discuss about B tree and B + tree.

Page 5 Code No.: 20859 E

19. (a) Describe the steps in Breadth First Traversal in Graphs.

Or

- (b) Write a Summary on Types of Graphs.
- 20. (a) Differentiate the Linear Search with Binary Search.

Or

(b) Explain the Selection Sort algorithm.

Page 6 Code No.: 20859 E