Reg. No.:....

Sub. Code: EMMA 41 Code No.: 20581 E

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Fourth Semester

Mathematics — Core

SEQUENCES AND SERIES

(For those who joined in July 2023 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

$$\lim_{n\to\infty} \frac{2n+1}{2n} = ---$$

(a) 0

(b) 1

(d) -1

2.
$$\lim_{n \to \infty} \left(\frac{1 + 2 + 3 + ... + n}{n^2} \right) = -$$

- The following are true except $(a_n) \to a$ and $(b_n) \to b$.
 - (a) $(a_n + b_n) \rightarrow a + b$ (b) $(a_n b_n) \rightarrow a b$

 - (c) $(a_n b_n) \to ab$ (d) $(\frac{a_n}{b}) \to (\frac{a}{b})$
- Example of a Cauchy sequence is -

- (c) $(-1)^n$ (d) (n^2)
- Example of a series $\sum_{n=1}^{\infty} a_n$ which is divergent but

$$\lim_{n\to\infty}a_n=0$$

- (b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- (c) $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ (d) $\sum_{n=1}^{\infty} \frac{1}{n^3}$

Page 2 Code No.: 20581 E

- 6. If $a_n = \frac{n!}{n^n}$ then $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{a_n}{a_{n+1}}$
 - (a) e

(b) 1

(c) 0

- (d) $\frac{1}{e}$
- 7. Applying Cauchy's root test the series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n \text{ is } \frac{1}{2n+1}$
 - (a) convergent
 - (b) divergent
 - (c) neither convergent nor divergent
 - (d) both convergent and divergent
- 8. Test the convergence of the series $\sum \frac{2^n n!}{n^n}$
 - (a) converges
 - (b) diverges
 - (c) both (a) and (b)
 - (d) none

Page 3 Code No.: 20581 E

- 9. A series whose terms alternatively positive and negative is called an ————.
 - (a) alternating series
 - (b) convergence series
 - (c) divergence series
 - (d) non alternating series
- 10. $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots = \sum (-1)^{n+1} \left(\frac{1}{n}\right)$ is an ———series.
 - (a) alternating
- (b) convergence
- (c) divergence
- (d) non alternating

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that
$$\lim_{n\to\infty} \frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{1}{2}$$
.

Or

b) Show that the sequence $\left(1+\frac{1}{n}\right)^n$ converges.

Page 4 Code No.: 20581 E [P.T.O.]

12. (a) Let (a_n) be a Cauchy sequence. If (a_n) has a subsequence (a_n) converging to l, then $(a_n) \to l$.

Or

- (b) Solve $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- 13. (a) Discuss the convergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$

Or

- (b) Let $\sum a_n$ converge to a and $\sum b_n$ converge to b. Then $\sum (a_n \pm b_n)$ converge to $a \pm b$ and $\sum ka_n$ converge to ka.
- 14. (a) Test the convergence of the series $\left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{2^2} + \frac{1}{3^2}\right) + \left(\frac{1}{2^3} + \frac{1}{3^3}\right) + \dots$

Or

(b) Show that $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log n\right)$ exists and lies between 0 and 1.

Page 5 Code No.: 20581 E

15. (a) Show that the following series converges:

$$\frac{1}{2^3} - \frac{1}{3^3} (1+2) + \frac{1}{4^3} (1+2+3) - \frac{1}{5^3} (1+2+3+4) + \dots$$

Or

(b) Is the following series $\sum \frac{x^{n-1}}{(n-1)!}$ converges absolutely for all value of x. If yes show it.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If $(a_n) \to a$ and $(b_n) \to b$ then $(a_n + b_n) \to a + b$.

Or

- (b) Show that $\lim_{n\to\infty} \frac{\log n}{n^p} = 0$ if p > 0.
- 17. (a) Prove that $\frac{1}{n}[(n+1)(n+2)...(n+n)]^{n} \to \frac{4}{e}$.
 - (b) Let (a_n) be a bounded sequence. Let $u_n = 1$.u.b of $\{a_n, a_{n+1},...\}$. Show that (u_n) is a monotonic decreasing sequence converging to $\limsup a_n$.

Page 6 Code No.: 20581 E

18. (a) Applying Cauchy's general principle of converge prove that $1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^n \frac{1}{n} + \dots \text{ is convergent.}$

Or

- (b) (i) If $\sum c_n$ converges and if $\lim_{n\to\infty} \left(\frac{a_n}{c_n}\right)$ exists and is finite then $\sum a_n$ also converges.
 - (ii) If $\sum d_n$ diverges and if $\lim_{n\to\infty} \left(\frac{a_n}{d_n}\right)$ exists and is greater than zero then $\sum a_n$ diverges.
- 19. (a) Test the convergence of the series.

$$\frac{1}{3}x + \frac{1}{3} \cdot \frac{2}{5}x^2 + \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7}x^3 + \dots$$

Or

(b) If the following series $\sum \frac{n^3 + a}{2^n + a}$ convergence. If yes then prove it.

Page 7 Code No.: 20581 E

20. (a) Show that the series $\sum (-1)^n \left[\sqrt{(n^2+1)} - n \right]$ is conditionally convergent.

Or

(b) Show that the series $\sum \frac{\sin n\theta}{n}$ converges for all values of θ .

Page 8 Code No.: 20581 E

Reg. No.:

Code No.: 20582 E Sub. Code: EMMA 42

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Fourth Semester

Mathematics — Core

FOURIER SERIES AND INTEGRAL TRANSFORMS

(For those who joined in July 2023 onwards)

Maximum: 75 marks Time: Three hours

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- The Fourier series of f(x) in $(-\pi, \pi)$ is periodic with period
 - (a) 0

- (a) 0 (b) π (c) 2π (d) $-\pi$
- Which one of the following is an odd function?
 - (a) $y = \cos x$ (b) $y = x^2$

- (c) y = |x| (d) $y = \sin x$

- In the half-range cusine series for $f(x) = x^2$ in $(0, \pi)$ the value of a_0 is

- (c) $\frac{3}{2}\pi^2$ (d) $\frac{4}{2}\pi^2$
- If y = f(x) is defined in $(0, 2\pi)$, then the root mean-square value of y is

(a)
$$\sqrt{\frac{1}{2\pi}} \int_{0}^{2\pi} y^2 dx$$
 (b) $\sqrt{\frac{1}{2l}} \int_{C}^{2l} y^2 dx$

(b)
$$\sqrt{\frac{1}{2l}} \int_{C}^{2l} y^2 dx$$

(c) 0

- (d) 1
- Fourier transform of f(x) is denoted by 5.
 - (a) f(s) (b) $\bar{f}(s)$

- (c) $\bar{f}(x)$ (d) F[f(s)]
- $F\{f(t)\} =$
 - (a) L(t)

(b) $L\{f(t)\}$

(c) $L\{\phi(t)\}$

(d)

Page 2 Code No.: 20582 E

- 7. L(1) =
 - (a) 1

(b) 0

(c) $\frac{1}{s}$

(d) $\frac{1}{s^2}$

- 8. $L(\cos t) =$
 - (a) $\frac{s}{s^2 + 1}$

(b) $\frac{s}{s+1}$

(c) $\frac{1}{s^2 + 1}$

(d) $\frac{1}{s+1}$

- $9. L^{-1}\left(\frac{1}{s-a}\right) =$
 - (a) e^t

(b) e^{at}

(c) t

- (d) t''
- $10. \quad L^{-1}\left(\frac{\alpha}{s^2 \alpha^2}\right) =$
 - (a) $\cosh t$

(b) $\sinh t$

(c) cosh at

(d) sinhat

Page 3 Code No.: 20582 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Explain the Fourier series of even functions.

Or

- b) Find the Fourier series of $f(x) = x^2$ in (0, 2l).
- 12. (a) Find the half-range cosine series of $f(x) = x \sin x$ in $(0, \pi)$.

Or

- (b) Derive the complex form of Fourier series.
- 13. (a) Find the Fourier transform of $e^{-\sigma^2 x^2}$.

Or

- (b) State and prove convolution theorem.
- 14. (a) Find $L(\sin^2 2t)$.

Or

(b) Find $L(t^2 + 2t + 3)$.

Page 4 Code No. : 20582 E [P.T.O.]

15. (a) Find
$$L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right]$$
.

Or

(b) Find
$$L^{-1} \left[\frac{1}{s(s+1)(s+2)} \right]$$
.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Find the Fourier series of period 2l for the function f(x) = x(2l-x) in (0,2l). Deduce the sum of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$

Or

- (b) Find the Fourier series expansion for the function $f(x) = \cosh ax$ in $(-\pi, \pi)$.
- 17. (a) Find the half-range cosine series of $f(x) = x(\pi x)$ in $(0, \pi)$. Hence find the sum of the series $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \infty$.

Or

(b) State and prove Parseval's theorem.

Page 5 Code No.: 20582 E

18. (a) State and prove Fourier integral theorem.

Or

- b) State and prove Parseval's identity.
- 19. (a) Evaluate $\int_{0}^{\infty} te^{-3t} \sin t dt$.

Or

(b) Find
$$L\left(\frac{1-e^t}{t}\right)/L\left(\frac{1-e^t}{t}\right)$$
.

20. (a) Find
$$L^{-1}\left(\frac{(s-3)}{s^2+4s+13}\right)$$
.

Or

(b) Find
$$L^{-1} \frac{1}{(s+1)(s^2+2s+2)}$$
.

Page 6 Code No.: 20582 E

(7 pages)	Reg. No.:					
Code N	o. : 20589 E	Sub. Code: EEMA 41				
B.S		EE EXAMINATION, 2025.				
Fourth Semester						
	Mathe	matics				
H	Elective — NUME	RICAL METHODS				
(For	those who joined	in July 2023 onwards)				
Time: Th	ree hours	Maximum: 75 marks				
	PART A — (10	× 1 = 10 marks)				
	Answer AL	L questions.				
Cho	ose the correct an	swer:				
1. ∇ =						
(a)	1+E	(b) 1-E				
(c)	$1+\Delta$	(d) $1 - E^{-1}$				
	algebraic sum of difference table is	the errors in any column of				
(a)	0	(b) <i>E</i>				

(d) -1

(c)

3.	The	first divided differen	nce [x	$[x_0,x_1] = \underline{\hspace{1cm}}$
	(a)	$[x_1, x_2]$	(b)	$-[x_1,x_0]$
	(c)	$[x_1,x_0]$	(d)	$[x_{n-1}, x_n]$
4.	forw	formula i		average of Gauss lae.
	(a)	Bessel's	(b)	Sterling's
	(e)	Newton's	(d)	Gauss
5.	The	error in the Tra	pezoio	dal rule is of order
	(a)	h	(b)	h^2
	(c)	h^3	(d)	h^4
6.		minima and max		of a function can be to zero.
	(a)	first derivative		
	(b)	second derivative	,	
	(c)	first divided diffe	rence	
	(d)	second divided di	fferer	nce
7.		method is	a ste	p by step method.
	(a)	Taylor's	(b)	Picard's
	(c)	Euler's	(d)	Romberg's
		Pa	ge 2	Code No. : 20589 E

- 8. Runge-Kutta method of first order is ______ method.
 - (a) Taylor's
- (b) Euler's

- (c) Milne's
- (d) Modified Euler's
- 9. The method of refining an initially crude estimate by means of more accurate formulae is known as method.
 - (a) Euler's
- (b) Runge-Kutta
- (c) Taylor's
- (d) Predictor-corrector
- 10. Predictor formula is used to predict the value of _____ at x_{i+1} .
 - (a) j

(b) $\frac{dy}{dx}$

(c) $\frac{d^2y}{dx^2}$

(d) x

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) Form the difference table of the function $y = x^3 + x^2 - 2x + 1$, x = -1,0,1,2,3,4.

Or

(b) Prove: $hD = \log(1 + \Delta) = -\log(1 - \nabla) = \sinh^{-1}(\mu \delta).$

Page 3 Code No.: 20589 E

12. (a) For the following data find f(9) using Newton's forward interpolation formula:

c: 8 10 12 14 16

f(x): 1000 1900 3250 5400 8950

Or

- (b) Using Stirling's formula, compute y_{35} given that $y_{10}=600$, $y_{20}=512$, $y_{30}=439$, $y_{40}=346$, $y_{50}=243$.
- 13. (a) Derive a formula for $\frac{dy}{dx}$ at $x = x_0$ using Newton's forward difference formula.

Or

- (b) Derive the Newton-Cote's quadrature formula.
- 14. (a) Solve the initial value problem $y'=2y+3e^x$, y(0)=0 at x=0.2 by Taylor's method.

Or

(b) Find the third approximation for the initial value problem $y'=1+y^2$, y(0)=0 using Picard's method.

Page 4 Code No. : 20589 E [P.T.O.] 15. (a) Write a short note on Predictor-Corrector method.

Or

(b) Derive the Adams-Bashforth predictor formula.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) Find the missing terms:

x: 0 1 2 3 4 5 6

y: 2 5 8 - 38 - 3

Or

- (b) Prove that $\nabla^r f(r) = \Delta^r f(x-r)$ for any positive integer r.
- 17. (a) From the following data, estimate the population for the year 1945:

Year: 1941 1951 1961 1971 1981 1991

Population: 2500 2800 3200 3700 4350 5225

Or

(b) Using Gauss's backward interpolation formula, estimate the value of sin 45° from the following table:

 x° : 20 30 40 50 60 70 $\sin x^{\circ}$: 0.342 0.502 0.642 0.766 0.866 0.939

Page 5 Code No.: 20589 E

18. (a) Obtain the value of $\log 2^{\frac{1}{3}}$ from $\int_{0}^{1} \frac{x^{2} dx}{1+x^{3}}$ using Simpson's one-third rule with h = 0.25.

Or

(b) From the following data, evaluate $\left(\frac{d\theta}{dt}\right)_{t=0.6}$ and $\left(\frac{d^2\theta}{dt^2}\right)_{t=0.6}$:

t: 0 0.2 0.4 0.6 0.8 1.0 θ: 0 0.12 0.49 1.12 2.02 3.20

19. (a) Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$, y(1) = 1. Evaluate y(1.3) by modified Euler's method.

Or

(b) Compute y(0.1) and y(0.2) by Runge-Kutta method of fourth order, given $\frac{dy}{dx} = xy + y^2$, y(0) = 1.

Page 6 Code No.: 20589 E

20. (a) Find y(0.4) by Milne's method for y'=1+xy, y(0)=2.

Or

(b) Using Adams-Bashforth method, determine y(1.4) given that $y'-x^2y=x^2$, y(1)=1.

Page 7 Code No.: 20589 E

(6 pa	pages) Reg. No.:					
Co	de N	No. : 20595 E	Sub	. Code : ESMA 41		
B.S	c. (CE	BCS) DEGREE E	XAMINA	TION, APRIL 2025.		
		Fourth	Semeste	r		
		Matl	nematics			
		Skill Enhar	ncement (Course		
GEOGEBRA						
	(For	those who joine	d in July	2023 onwards)		
Time: Three hours Maximum: 75 mark						
		PART A — (1	$0 \times 1 = 10$	marks)		
*		Answer A	LL questi	ions.		
	Cho	ose the correct a	nswer:			
1.	Geo	Gebra is an inter	ractive —	system.		
	(a)	calculus	(b)	algebra		
	(c)	geometry	(d)	none of these		
2.	The	extension of Geo	Gebra is			
	(a)	.gbb	(b)	.8gb		

(d) .gbg

(c)

.bgg

3.	In GeoGebra, name a new object by typing					
	(a)	Name	(b)	name		
	(c)	name =	(d)	object =		
4.	Vec	tors are always nan	ned wi	th		
	(a)	Lower case letter				
	(b)	Upper case letter				
	(c)	Both (a) and (b)				
	(d)	Numbers				
5.	Exp	ort the graphics vie	w to t	he clipboard using		
	(a)	Ctrl-C				
	(b)	Ctrl-Shift-C				
	(c)	Shift-C				
	(d)	Alt-C				
6.		erting pictures fro	om, th	ne clipboard to OO		
	(a)	Ctrl-V	(b)	Shift-V		
	(c)	Ctrl-P	(d)	Shift-P		

Page 2 Code No. : 20595 E

7.	In a	GeoGebra	window	grid	is	in		
	menu							

(a) Insert

(b) View

(c) Tool

(d) File

8. In a spreadsheet view, the cell in column A and row 1 is named as

(a) 1A

(b) A1

(c) Cell 1

(d) Cell A

9. dpi stands for

- (a) dots per inch
- (b) dot picture in
- (c) dot picture idea
- (d) dot picture insert

10. To export the figure as a dynamic worksheet using the menu

(a) View

(b) File

(c) Insert

(d) Tool

Page 3 Code No.: 20595 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) What is GeoGebra and how does it work?

Or

- (b) How to save GeoGebra files? Explain.
- 12. (a) Explain the regular Hexagon Construction.

Or

- (b) How to use sliders to modify parameters?
- 13. (a) Explain the parameters of a Linear equation.

Or

- (b) Explain the exploring properties of reflection.
- 14. (a) How to insert static text? Explain.

Or

(b) How to attach text to an object? Explain.

Page 4 Code No.: 20595 E [P.T.O.]

15. (a) Explain the Best fit line.

Or

(b) Write a short note on GeoGebra tube.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Explain the installation process of GeoGebra.

Or

- (b) Explain the equilateral triangle construction.
- 17. (a) How to visualize the theorem of Tabs? Explain.

Or

- (b) Explain the Library of functions.
- 18. (a) Explain exporting pictures to the clipboard.

Or

(b) Explain creating a Geometric figures memory game.

Page 5 Code No.: 20595 E

19. (a) Explain the rotation of a polygon.

Or

- (b) Explain the visualizing a system of equations.
- 20. (a) Explain exploring basic statistics.

Or

b) Explain creating dynamic worksheets.

Page 6 Code No.: 20595 E